Optimal Outdoor Urban Irrigation Conservation Methodology

Kenneth Friedman and James P. Heaney
Topics to Cover

- Urban water systems parcel level database
- Parcel level irrigation demand analysis
 - Determination of irrigators from potable system
 - Irrigable area distribution and trends
 - Application rate distribution and trends
- Predicted savings from outdoor conservation BMPs
 - Soil moisture sensors, irrigation audits, reuse
- Optimal outdoor BMP strategy
 - Nonlinear programming approach
- Incorporation into EZ Guide
 - Florida water conservation and planning online tool
Total Parcels: 8,807,768

Parcels Alachua: 99,305

Total Parcels GRU: 55,551

SFR parcels GRU: 30,910
Irrigable area mass balance

Direct IA data from parcel level database
Irrigable or pervious area \((PA)\)-GRU

\[A_{irrigable} = PA = TA - (FS + AIA) \]

The time-series of the calculated data in the figure shows the decreasing trend in irrigable area.
Major Increase in Popularity of In-ground Irrigation Systems Since 1987 in Gainesville
Irrigable Area Distribution

- IA distribution appears lognormal
- Avg. IA (of irrigators) = 12.31ksf
- Std. dev. = 11.30 ksf

DeOreo and Mayer 2011 California SFR IA Data

Parcel Level Irrigation Demand Estimation

1. Hydrograph separation utilized to determine monthly outdoor usage for each SFR parcel
 - Total monthly usage from customer billing data
 - Indoor usage estimated from property appraisal data
 - Indoor usage consistent across country (Mayer et al. 1999, REUWS)

\[\bar{Q}_{out} = \bar{Q}_{tot} - \bar{Q}_{in} \]

Where:
- \(\bar{Q}_{out} \) = single family residential outdoor usage (gal/mo)
- \(\bar{Q}_{in} \) = single family residential indoor usage (gal/mo)
- \(\bar{Q}_{tot} \) = single family residential total usage (gal/mo)
Parcel Level Irrigation Demand Estimation

2. Estimate application rate from calculated Q_{out} and IA

$$\bar{Q}_{out} = k \times AR \times IA$$

Where:

- $AR = \text{average application rate for a given parcel (in. /yr.)}$
- $\bar{Q}_{out} = \text{average monthly outdoor usage (gal/mo)}$
- $IA = \text{irrigable area (1,000 ft}^2\text{)}$
- $k = \text{conversion factor}$

3. Determine which parcels irrigate from the potable system

- Irrigates from potable if: $1 \leq IA \leq 100$ and $1 \leq AR \leq 100$
- Removes outliers, and non-irrigators
• Avg AR (of irrigators) = 14.24 in./yr., std. dev. = 14.60 in./yr.
• Number of irrigators from potable = 16,303 of 30,903 total SFR (53%)
Predicted Savings From Outdoor Conservation BMPs

\[\Delta Q_{out} = k \times IA \times (AR_i - AR_{min}) \]

Where:

- \(\Delta Q_{out} \) = change in total irrigation water use per parcel (gpad)
- \(AR_i \) = current irrigation application rate (in/yr)
- \(IA \) = irrigable area (sf)
- \(AR_{min} \) = minimum required irrigation application rate (in/yr)
- \(k \) = conversion factor

- Savings directly calculated as difference between current and “minimum required application rate (MAR)”
- MAR reflects a desired threshold application achieved with implementation of an outdoor BMP
- Assume IA remains constant
- Only reasonable to target SFR’s that irrigate above MAR
Joint distribution of AR vs. IA for GRU

Annual application rate vs. irrigable area for 16,303 GRU potable irrigators

- Application rate (lbs./yr.)
- Irrigable area (1,000 ft²)

Minimum application rate
Water Savings Production Function for Soil Moisture Sensors in GRU

<table>
<thead>
<tr>
<th>MAR, in./yr.</th>
<th>N</th>
<th>avg. IA, ksf</th>
<th>avg. AR above MAR, in./yr.</th>
<th>Maximum Savings Potential, gal./day</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16,303</td>
<td>12.31</td>
<td>14.24</td>
<td>3,265,116</td>
</tr>
<tr>
<td>25</td>
<td>2,746</td>
<td>6.95</td>
<td>15.72</td>
<td>440,119</td>
</tr>
<tr>
<td>40</td>
<td>1,070</td>
<td>5.87</td>
<td>15.31</td>
<td>144,145</td>
</tr>
</tbody>
</table>

Comparison of savings potential for varying minimum application rates in GRU

- **1 in/yr min. application rate**
- **25 in/yr application rate**
- **40 in/yr min. application rate**
Consequences of Including Irrigators Below MAR

Cumulative savings for a minimum application rate of 25 in/yr
Optimal Mix of Outdoor BMPs can be Found Using Nonlinear Programming

The least cost mix of soil moisture sensor retrofits, irrigation audits, and reuse to achieve a desired reduction in water use (gal/day) can be found by solving following the nonlinear program:

Minimize \(Z = c_1 x_1 + c_2 x_2 + c_3 x_3 \)

Subject to:

\[
y = \sum_{i=1}^{3} y_{\text{max},i} \cdot (1 - e^{-k_i x_i})
\]

\(x_i \leq x_{\text{max},i} \)

\(y \geq Q \)

\(x \geq 0 \)

Where:

\(Z \) = total costs, $/day

\(y \) = quantity of water saved, gal/day

\(Q \) = water savings target, gal/day

\(c \) = unit cost of bmp, $/account/day

\(x \) = number of accounts to retrofit with an upper bound of \(x_{\text{max}} \)
Recent Application of Methodology

- Applied to a 6 county planning region in Central Florida (CFWI)
- An estimated 50% (304,214 of 610,536) of SFR parcels irrigate from potable system
- MAR for reuse assumed to be 0 in/yr
- MAR for irrigation audits and soil moisture sensors requested to be set at 40 in/yr
 - Audits assumed to reduce demand by 0.25*ΔAR
- Assumed 10% of irrigators (30,214) could be hooked up to reuse

Parameters for the outdoor BMP optimization

<table>
<thead>
<tr>
<th>BMP</th>
<th>c_i</th>
<th>ymax_i</th>
<th>k_i</th>
<th>xmax_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil moisture sensors (x1)</td>
<td>0.22</td>
<td>3,494,087</td>
<td>2.241E-4</td>
<td>28,119</td>
</tr>
<tr>
<td>Irrigation audits (x2)</td>
<td>0.06</td>
<td>873,522</td>
<td>2.241E-4</td>
<td>28,119</td>
</tr>
<tr>
<td>Reuse (x3)</td>
<td>0.36</td>
<td>5,493,904</td>
<td>1.9401E-4</td>
<td>30,421</td>
</tr>
<tr>
<td>Total</td>
<td>n/a</td>
<td>9,861,513</td>
<td>n/a</td>
<td>86,659</td>
</tr>
</tbody>
</table>
Least costly combination of the three outdoor BMPs to meet a specified target savings for CFWI.

<table>
<thead>
<tr>
<th>Target conservation savings, Q (MGD)</th>
<th>Total cost ($/d)</th>
<th>Accounts to retrofit</th>
<th>Total accounts</th>
<th>Marginal cost ($/kgal)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Soil moisture sensors</td>
<td>Irrigation audits</td>
<td>Reuse</td>
</tr>
<tr>
<td>0.5</td>
<td>$151</td>
<td>623</td>
<td>235</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>$321</td>
<td>986</td>
<td>599</td>
<td>189</td>
</tr>
<tr>
<td>3</td>
<td>$1,115</td>
<td>2,127</td>
<td>1,739</td>
<td>1,508</td>
</tr>
<tr>
<td>5</td>
<td>$2,185</td>
<td>3,661</td>
<td>3,280</td>
<td>3,285</td>
</tr>
<tr>
<td>7</td>
<td>$3,830</td>
<td>6,029</td>
<td>5,641</td>
<td>6,016</td>
</tr>
<tr>
<td>8</td>
<td>$5,166</td>
<td>7,948</td>
<td>7,560</td>
<td>8,232</td>
</tr>
<tr>
<td>8.3</td>
<td>$5,711</td>
<td>8,730</td>
<td>8,342</td>
<td>9,139</td>
</tr>
<tr>
<td>9</td>
<td>$7,558</td>
<td>11,378</td>
<td>10,999</td>
<td>12,208</td>
</tr>
<tr>
<td>9.2</td>
<td>$8,378</td>
<td>12,567</td>
<td>12,176</td>
<td>13,563</td>
</tr>
<tr>
<td>9.4</td>
<td>$9,496</td>
<td>14,175</td>
<td>13,768</td>
<td>15,420</td>
</tr>
<tr>
<td>9.6</td>
<td>$11,260</td>
<td>16,703</td>
<td>16,331</td>
<td>18,348</td>
</tr>
<tr>
<td>9.7</td>
<td>$12,756</td>
<td>18,855</td>
<td>18,457</td>
<td>20,834</td>
</tr>
<tr>
<td>9.8</td>
<td>$15,753</td>
<td>23,162</td>
<td>22,777</td>
<td>25,808</td>
</tr>
<tr>
<td>9.83</td>
<td>$17,829</td>
<td>26,119</td>
<td>25,807</td>
<td>29,263</td>
</tr>
</tbody>
</table>

#Marginal cost is the shadow price (dual variable) with the respect to the specified minimum amount of water.
Total and Marginal Cost Curves for CFWI Outdoor BMPs

Total cost curve for CFWI outdoor BMPs

- Equation: \(y = 193.38e^{0.4289x} \)
- \(R^2 = 0.9712 \)

- **X-axis:** Cumulative water saved (MGD)
- **Y-axis:** Total cost ($/day)

Marginal cost curve for CFWI outdoor BMPs

- **X-axis:** Cumulative water saved (MGD)
- **Y-axis:** Marginal cost ($/mgal/day)
Ongoing Methodology Enhancements

- Reuse market potential and cost per account highly variable and utility specific
- Depends on existing reuse network and reclaimed water treatment plant locations

Combining with other BMPs

Legend
- Irrigation Selection Group
- Toilet Selection Group
- State roads
- Interstate highways
- Service Area Boundary
- FDOR Parcels

Reuse service areas
Summary And Conclusions

- Outdoor water usage can be estimated at the parcel level using property appraisal and customer billing data.
- Trending toward smaller irrigable area with increasing percentage of in-ground sprinklers.
- Need to focus outdoor BMPs on only those homes which “over irrigate.”
- Optimal mix of outdoor BMPs can be found using nonlinear programming.
 - Can be extended to BMPs from other sectors.
- Reuse opportunities depend on current infrastructure.
- Incorporation into EZ Guide planning tool.